Журнал для автомобилиста

Что такое терморезисторы и для чего они нужны. Принцип работы термистора Как выглядят термисторы

Полупроводниковые термосопротивления. Термисторы. Терморезисторы. Принцип действия и характеристики

Основы работы полупроводниковых терморезисторов, их типы, технические характеристики, график температурной зависимости сопротивления.

Значительная зависимость сопротивления полупроводников от температуры позволила сконструировать чувствительные терморезисторы (термисторы, термосопротивления), представляющие собой объемные полупроводниковые сопротивления с большим температурным коэффициентом сопротивления. В зависимости от назначений терморезисторы изготовляются из веществ с различным значением удельного сопротивления. Для изготовления терморезисторов могут применяться полупроводники как с электронным, так и с дырочным механизмом проводимости и беспримесные вещества. Основными параметрами вещества терморезистора, определяющими его качество, являются: величина температурного коэффициента, химическая стабильность и температура плавления.

Большинство типов термисторов надежно работает лишь в определенных температурных пределах. Всякий перегрев свыше нормы пагубно действует на терморезистор (термосопротивление), а иногда даже может привести к его гибели.

Для предохранения от вредного влияния окружающей среды, и в первую очередь кислорода воздуха, терморезисторы иногда помещаются в баллон, наполненный инертным газом.

Конструкция терморезистора весьма несложна. Кусочку полупроводника придается форма нити, бруска, прямоугольной пластинки, шарика или какая-нибудь иная форма. На противоположных частях терморезистора вмонтированы два вывода. Величина омического сопротивления термистора, как правило, заметно больше величин сопротивлений других элементов схемы и, что самое главное, резко зависит от температуры. Поэтому когда в схеме течет ток, его величина в основном определяется величиной омического сопротивления термистора или в конечном счете его температурой. С повышением температуры термистора ток в схеме увеличивается, и, наоборот, с понижением температуры ток уменьшается.

Нагрев термостата может осуществляться передачей тепла от окружающей среды, выделением тепла в самом термисторе при прохождении через него электрического тока или, наконец, при помощи специальных подогревных обмоток. Способ нагрева терморезистора непосредственным образом связан с его практическим использованием.

Сопротивление термистора с изменением температуры может изменяться на три порядка, т. е. в 1000 раз. Это характерно для термисторов, изготовленных из плохо проводящих материалов. В случае хорошо проводящих веществ отношение находится в пределах десяти.

Всякий терморезистор обладает тепловой инерционностью, которая в одних случаях играет положительную роль, в других - либо не имеет практически никакого значения, либо отрицательно сказывается и ограничивает пределы использования терморезисторов. Тепловая инерция проявляется в том, что термистор, подвергающийся нагреву, не сразу принимает температуру нагревателя, а лишь через некоторое время. Характеристикой тепловой инерции терморезистора может служить так называемая постоянная времени τ . Постоянная времени численно равна тому количеству времени, в течение которого термистор, ранее находившийся при 0° С, а затем перенесенный в среду с температурой 100° С, уменьшит свое сопротивление на 63%.

Для большинства полупроводниковых терморезисторов зависимость сопротивления от температуры имеет нелинейный характер (рис.1, А). Тепловая инерция терморезистора мало отличается от инерции ртутного термометра.

При нормальном режиме эксплуатации параметры терморезисторов с течением времени меняются мало, а поэтому срок их службы достаточно велик и в зависимости от марки терморезистора колеблется в интервале, верхний предел которого исчисляется несколькими годами.

Рассмотрим для примера кратко три типа терморезисторов (термосопротивления): ММТ-1, ММТ-4 и ММТ-5.

На рис.1(В) показаны принципиальное устройство и конструкции этих терморезисторов. Терморезистор ММТ-1 покрыт снаружи эмалевой краской и предназначен для работы в сухих помещениях; терморезисторы ММТ-4 и ММТ-5 смонтированы в металлических капсулах и герметизированы. Поэтому они не подвержены вредному влиянию окружающей среды, предназначены для работы в условиях любой влажности и даже могут находиться в жидкостях (не действующих на корпус терморезисторов)

Омическое сопротивление терморезисторов находится в диапазоне от 1000 - 200000 ом при температуре 20° С, а температурный коэффициент α около 3% на 1°С. На рис.2 изображена кривая, показывающая в процентах изменение омического сопротивления термистора в зависимости от его температуры. На этом графике за начальное значение принято сопротивление при 20° С.

Описываемые типы терморезисторов рассчитаны на работу в температурном интервале от -100 до + 120° С. Перегрев их недопустим.

Термосопротивления (термисторы, терморезисторы) упомянутых типов весьма стабильны, т. е. сохраняют практически неизменным свое "холодное" сопротивление, величина которого определяется при 20° С в течение весьма длительного времени. Высокая стабильность терморезисторов типа ММТ определяет их большой срок службы, который, как указано в паспорте, в нормальном режиме их работы практически безграничен. Термосопротивления (термисторы, терморезисторы) типа ММТ обладают хорошей механической прочностью.

На рисунках: конструкции некоторых термисторов, характерная температурная зависимость сопротивления термистора.

Электротехника / Твердотельная электроника / 8.2.1. Принцип действия позисторов

Позистор – это полупроводниковый терморезистор с положительным темпера­турным коэффициентом сопротивления.

В массовом производстве позисторы делают на основе кера­мики из титаната бария. Титанат бария BaTiO 3 – диэлектрик с удельным сопротивлением при комнатной температуре 10 10 …10 12 Ом. см, что значительно превышает удельное сопротивление полупровод­ников. Если же в состав керамики из титаната бария ввести примеси редкоземельных элементов (лантана, церия или др.) либо других элементов (ниобия, тантала, сурьмы, висмута и т.п.), имеющих валентность, большую, чем у титана, и ионный радиус, близкий к радиусу иона титана, то это приведет к уменьшению удельного сопротивления до 10…10 2 Ом. см, что соответствует удельному сопротивлению полупроводниковых материалов.

Полупроводниковый титанат бария об­ладает аномальной температурной зависимостью удельного со­противления: в узком диапазоне температур при нагреве выше точки Кюри удельное сопротивление полупроводникового титаната бария увеличивается на несколько порядков.

Механизм электропроводности по­лупроводникового титаната бария при наличии примесей можно представить следующим образом. Примесь редко­земельного элемента (например, лан­тана) замещает в узле кристалличе­ской решетки барий. Часть атомов ти­тана, поддерживая электрическую нейтральность всего кристалла, захва­тывает лишние валентные электроны лантана, имеющего большую валент­ность, чем валентность бария. Захва­тываемые электроны, находясь в ква­зиустойчивом состоянии, легко переме­щаются под действием электрического поля и обусловливают электропроводность материала.

В полупроводниковом тита­нате бария существуют четырехвалентные и трехвалентные ионы титана. Между разновалентными ионами титана может происхо­дить обмен электронами. При этом каждый ион титана стано­вится то трех-, то четырехвалентным. Этот процесс является причиной электропроводности титаната бария.

Появление полупроводниковых свойств в ионных кристаллах под влиянием примесей наблюдается так­же и для оксида никеля. Полупро­водники, изготовляемые подобным методом, иногда называют полупро­водниками с управляемой валент­ностью.

Технология изготовления позисторов аналогична технологии изготовления изделий из других керамических материалов. После смешивания исходных компонен­тов и веществ, содержащих примесные элементы, проводят первич­ный обжиг этой смеси при температуре около 1000 °С.

Полученную твердую массу измельчают, а затем формуют заготовки. Вторичный обжиг производят при тем­пературе 1300…1400 °С.

В результате, резистивный слой позистора состоит из большого числа контактирующих между

собой зерен или крис­таллитов полупроводникового титаната бария.

Сопротивление позистора зависит от сопротивлений обедненных поверхностных слоев на зернах. Высота поверх­ностных потенциальных барьеров оказывается малой при темпе­ратурах ниже точки Кюри, когда в зернах существует спонтанная поляризация и материал обладает очень большой диэлектрической проницаемостью.

При температурах, больших точки Кюри, титанат бария претерпевает фазовое превращение из сегнетоэлектрического в параэлектрическое со­стояние. При этом пропадает спон­танная поляризация, резко умень­шается диэлектрическая проницае­мость, растет высота поверхностных потенциальных барьеров на зернах и увеличивается со­противление позистора (рис. 8.3).

Участок роста сопротивления зависит от точки Кюри керамики. Точка Кюри титаната ба­рия может быть смещена в сторону низких температур путем частичного замещения бария стронцием. И на­оборот, точка Кюри может быть сме­щена в сторону больших температур частичной заменой бария свинцом.

Уменьшает точку Кюри и частичная замена титана цирконием, оловом или самарием. Такое регулирование позволяет создавать позисторы, у которых положительный температурный коэффи­циент сопротивления наблюдается в разных диапазонах темпе­ратур.

Иногда для создания позисторов используют монокристаллические кремний, германий и другие полупроводниковые материалы. Принцип действия таких позисторов основан на уменьшении подвижности носителей заряда с увеличением температуры

Терморезисторы

Обозначение на схеме, разновидности, применение

В электронике всегда приходится что-то измерять или оценивать. Например, температуру. С этой задачей успешно справляются терморезисторы - электронные компоненты на основе полупроводников, сопротивление которых изменяется в зависимости от температуры.

Здесь я не буду расписывать теорию физических процессов, которые происходят в терморезисторах, а перейду ближе к практике - познакомлю читателя с обозначением терморезистора на схеме, его внешним видом, некоторыми разновидностями и их особенностями.

На принципиальных схемах терморезистор обозначается вот так.

В зависимости от сферы применения и типа терморезистора обозначение его на схеме может быть с небольшими отличиями. Но вы всегда его определите по характерной надписи t или t 0 .

Основная характеристика терморезистора — это его ТКС . ТКС — это температурный коэффициент сопротивления . Он показывает, на какую величину изменяется сопротивление терморезистора при изменении температуры на 1 0 С (1 градус Цельсия) или 1 градус по Кельвину.

У терморезисторов несколько важных параметров. Приводить я их не буду, это отдельный рассказ.

На фото показан терморезистор ММТ-4В (4,7 кОм). Если подключить его к мультиметру и нагреть, например, термофеном или жалом паяльника, то можно убедиться в том, что с ростом температуры его сопротивление падает.

Терморезисторы есть практически везде. Порой удивляешься тому, что раньше их не замечал, не обращал внимания. Давайте взглянем на плату от зарядного устройства ИКАР-506 и попробуем найти их.

Вот первый терморезистор. Так как он в корпусе SMD и имеет малые размеры, то запаян на небольшую плату и установлен на алюминиевый радиатор - контролирует температуру ключевых транзисторов.

Второй. Это так называемый NTC-термистор (JNR10S080L ). О таких я ещё расскажу. Служит он для ограничения пускового тока. Забавно. Вроде терморезистор, а служит в качестве защитного элемента.

Почему то если заходит речь о терморезисторах, то обычно думают, что они служат для измерения и контроля температуры. Оказывается, они нашли применение и как устройства защиты.

Также терморезисторы устанавливаются в автомобильные усилители. Вот терморезистор в усилителе Supra SBD-A4240. Здесь он задействован в цепи защиты усилителя от перегрева.

Вот ещё пример. Это литий-ионный аккумулятор DCB-145 от шуруповёрта DeWalt. Вернее, его "потроха". Для контроля температуры аккумуляторных ячеек применён измерительный терморезистор.

Его почти не видно.

Он залит силиконовым герметиком. Когда аккумулятор собран, то этот терморезистор плотно прилегает к одной из Li-ion ячеек аккумулятора.

Прямой и косвенный нагрев.

По способу нагрева терморезисторы делят на две группы:

    Прямой нагрев.

    Что такое термистор его применение в электронике

    Это когда терморезистор нагревается внешним окружающим воздухом или током, который протекает непосредственно через сам терморезистор. Терморезисторы с прямым нагревом, как правило, используются либо для измерения температуры, либо температурной компенсации. Такие терморезисторы можно встретить в термометрах, термостатах, зарядных устройствах (например, для Li-ion батарей шуруповёртов).

    Косвенный нагрев. Это когда терморезистор нагревается рядом расположенным нагревательным элементом. При этом он сам и нагревательный элемент электрически не связаны друг с другом. В таком случае, сопротивление терморезистора определяется функцией тока, протекающего через нагревательный элемент, а не через терморезистор. Терморезисторы с косвенным нагревом являются комбинированными приборами.

NTC-термисторы и позисторы.

По зависимости изменения сопротивления от температуры терморезисторы делят на два типа:

    NTC-термисторы;

    PTC-термисторы (они же позисторы ).

Давайте разберёмся, какая между ними разница.

NTC-термисторы.

Своё название NTC-термисторы получили от сокращения NTC - Negative Temperature Coefficient , или "Отрицательный Коэффициент Сопротивления". Особенность данных термисторов в том, что при нагреве их сопротивление уменьшается . Кстати, вот так обозначается NTC-термистор на схеме.

Обозначение термистора на схеме

Как видим, стрелки на обозначении разнонаправлены, что указывает на основное свойство NTC-термистора: температура увеличивается (стрелка вверх), сопротивление падает (стрелка вниз). И наоборот.

На практике встретить NTC-термистор можно в любом импульсном блоке питания. Например, такой термистор можно обнаружить в блоке питания компьютера.

Мы уже видели NTC-термистор на плате ИКАР’а, только там он был серо-зелёного цвета.

На этом фото NTC-термистор фирмы EPCOS. Применяется для ограничения пускового тока.

Для NTC-термисторов, как правило, указывается его сопротивление при 25 0 С (для данного термистора это 8 Ом) и максимальный рабочий ток. Обычно это несколько ампер.

Данный NTC-термистор устанавливается последовательно, на входе сетевого напряжения 220V. Взгляните на схему.

Так как он включен последовательно с нагрузкой, то весь потребляемый ток протекает через него. NTC-термистор ограничивает пусковой ток, который возникает из-за заряда электролитических конденсаторов (на схеме С1). Бросок зарядного тока может привести к пробою диодов в выпрямителе (диодный мост на VD1 — VD4).

При каждом включении блока питания конденсатор начинает заряжаться, а через NTC-термистор начинает протекать ток. Сопротивление NTC-термистора при этом велико, так как он ещё не успел нагреться. Протекая через NTC-термистор, ток разогревает его. После этого сопротивление термистора уменьшается, и он практически не препятствует протеканию тока, потребляемого прибором. Таким образом, за счёт NTC-термистора удаётся обеспечить "плавный запуск" электроприбора и уберечь от пробоя диоды выпрямителя.

Понятно, что пока импульсный блок питания включен, NTC-термистор находится в "подогретом" состоянии.

Если в схеме происходит выход из строя каких-либо элементов, то, обычно резко возрастает и потребляемый ток. При этом нередки случаи, когда NTC-термистор служит своего рода дополнительным предохранителем и также выходят из строя из-за превышения максимального рабочего тока.

Выход из строя ключевых транзисторов в блоке питания зарядного устройства привел к превышению максимального рабочего тока этого термистора (max 4A) и он сгорел.

Позисторы. PTC-термисторы.

Термисторы, сопротивление которых при нагреве растёт , называют позисторами. Они же PTC-термисторы (PTC — Positive Temperature Coefficient , "Положительный Коэффициент Сопротивления").

Стоит отметить, что позисторы получили менее широкое распространение, чем NTC-термисторы.

Условное обозначение позистора на схеме.

Позисторы легко обнаружить на плате любого цветного CRT-телевизора (с кинескопом). Там он установлен в цепи размагничивания. В природе встречаются как двухвыводные позисторы, так и трёхвыводные.

На фото представитель двухвыводного позистора, который применяется в цепи размагничивания кинескопа.

Внутри корпуса между выводами-пружинами установлено рабочее тело позистора. По сути это и есть сам позистор. Внешне выглядит как таблетка с напылением контактного слоя по бокам.

Как я уже говорил, позисторы используются для размагничивания кинескопа, а точнее его маски. Из-за магнитного поля Земли или влияния внешних магнитов маска намагничивается, и цветное изображение на экране кинескопа искажается, появляются пятна.

Наверное, каждый помнит характерный звук "бдзынь", когда включается телевизор — это и есть тот момент, когда работает петля размагничивания.

Кроме двухвыводных позисторов широко применяются трёхвыводные позисторы.

Отличие их от двухвыводных заключается в том, что они состоят из двух позисторов-"таблеток", которые установлены в одном корпусе. На вид эти "таблетки" абсолютно одинаковые. Но это не так. Кроме того, что одна таблетка чуть меньше другой, так ещё и сопротивление их в холодном состоянии (при комнатной температуре) разное. У одной таблетки сопротивление около 1,3 ~ 3,6 кОм, а у другой всего лишь 18 ~ 24 Ом.

Трёхвыводные позисторы также применяются в цепи размагничивания кинескопа, как и двухвыводные, но только схема их включения немного иная. Если вдруг позистор выходит из строя, а такое бывает довольно часто, то на экране телевизора появляются пятна с неестественным отображением цвета.

Более детально о применении позисторов в цепи размагничивания кинескопов я уже рассказывал здесь.

Так же, как и NTC-термисторы, позисторы используются в качестве устройств защиты. Одна из разновидностей позистора — это самовосстанавливающийся предохранитель.

SMD-терморезисторы.

С активным внедрением SMT-монтажа, производители стали выпускать терморезисторы и для поверхностного монтажа. По внешнему виду такие терморезисторы мало отличаются от керамических SMD-конденсаторов. Размеры соответствуют стандартному ряду: 0402, 0603, 0805, 1206. Визуально отличить их на печатной плате от рядом расположенных SMD-конденсаторов практически невозможно.

Встроенные терморезисторы.

В электронике активно применяются и встроенные терморезисторы. Если у вас паяльная станция с контролем температуры жала, то в нагревательный элемент встроен тонкоплёночный терморезистор. Также терморезисторы встраиваются и в фен термовоздушных паяльных станций, но там он является отдельным элементом.

Стоит отметить, что в электронике наряду с терморезисторами активно применяются термопредохранители и термореле (например, типа KSD), которые также легко обнаружить в электронных приборах.

Теперь, когда мы познакомились с терморезисторами, пора узнать об их параметрах.

Главная » Радиоэлектроника для начинающих » Текущая страница

Т акже Вам будет интересно узнать:

ТЕРМОРЕЗИСТОРЫ

Терморезистор - полупроводниковый резистор, в котором используется зависимость электрического сопротивления полупроводникового материала от температуры.

Для терморезистора характерны большой температурный коэффициент сопротивления (ТКС), простота устройства, способность работать в различных климатических условиях при значительных механических нагрузках, стабильность характеристик во времени.

Рис.2.1. Терморезисторы.

Кострукция Терморезисторы изготавливают в виде стержней, трубок, дисков, шайб, бусинок и тонких пластинок преимущественно методами порошковой металлургии. Их размеры могут варьироваться в пределах от 1–10 мкм до 1–2 см.

Классификация. Терморезисторыклассифицируются по основным параметрам.

по температуре эксплуатации:

§ сверхнизкотемпературные (температуpa 4,2 К),

§ низкотемпературные (температуpa ниже 170 К),

§ среднетемпературные (170–510 К)

§ высокотемпературные (выше 570 К).

§ сверхвысокотемпературные (температуpa 900–1300 К.).

по знаку ТКС:

§ позисторы (PTC-термисторы) — терморезисторы с положительным температурным коэффициентом сопротивления (ПТКС);

§ термисторы (NTC-термисторы) — терморезисторы с отрицательным температурным коэффициентом сопротивления (ОТКС);

то способу подогрева:

§ с прямым подогревом;

§ с косвенным подогревом.

Кроме классификации по основным параметрам, терморезисторы так же различают по назначению, по способы защиты, по конструкции, по типу материала, по технологии изготовления, режиму работы.

Режим работы терморезисторов зависит от того, на каком участке статической вольт-амперной характеристики (ВАХ) выбрана рабочая точка. В свою очередь ВАХ зависит как от конструкции, размеров и основных параметров терморезистора, так и от температуры, теплопроводности окружающей среды, тепловой связи между терморезистором и средой. Терморезисторы с рабочей точкой на начальном (линейном) участке ВАХ используются для измерения и контроля температуры и компенсации температурных изменений параметров электрической цепей и электронных приборов. Терморезисторы с рабочей точкой на нисходящем участке ВАХ (с отрицательным сопротивлением) применяются в качестве пусковых реле, реле времени, измерителей мощности электромагнитного излучения на СВЧ, стабилизаторов температуры и напряжения. Режим работы терморезистора, при котором рабочая точка находится также на ниспадающем участке ВАХ (при этом используется зависимость сопротивления терморезистора от температуры и теплопроводности окружающей среды), характерен для терморезисторов, применяемых в системах теплового контроля и пожарной сигнализации, регулирования уровня жидких и сыпучих сред; действие таких терморезисторов основано на возникновении релейного эффекта в цепи с терморезистором при изменении температуры окружающей среды или условий теплообмена терморезистора со средой.

Рис. 2.2. Классификация терморезисторов.

Основными параметрами терморезистора являются: номинальное сопротивление, температурный коэффициент сопротивления, интервал рабочих температур, максимально допустимая мощность рассеяния.

Различают терморезисторы с отрицательным (термисторы) и положительным (позисторы) ТКС. Их ещё называют NTC-термисторы и PTC-термисторы соответственно. У позисторов с ростом температуры растет и сопротивление, а у термисторов - наоборот: при увеличении температуры сопротивление падает.

Терморезисторы с отрицательным ТКС изготовляют из смеси поликристаллических оксидов переходных металлов (например, MnO, СoO?, NiO, CuO), легированных Ge и Si, полупроводников типа A III B V , стеклообразных полупроводников и других материалов.

Изготовляются также терморезисторы специальной конструкции - с косвенным подогревом. В таких терморезисторах имеется подогревная обмотка, изолированная от полупроводникового резистивного элемента (если при этом мощность, выделяющаяся в резистивном элементе, мала, то тепловой режим терморезистора определяется температурой подогревателя, то есть током в нём). Таким образом, появляется возможность изменять состояние терморезистора, не меняя ток через него. Такой терморезистор используется в качестве переменного резистора, управляемого электрически на расстоянии.

Условное изображение терморезисторов. Терморезисторы это разновидность резисторов, поэтому к изображению обычного резистора добавляют добавочные графические элементы.

Рис. 2.3. Условное изображение терморезисторов: а) общее графическое изображение; б) термистор (терморезистор с отрицательным ТКС); в) позистор (терморезистор с положительным ТКС); г) терморезисторов с косвенным подогревом.

Условное обозначение терморезисторов. В настоящее время промышленностью изготовляются терморезисторы соответствующие трем различным ГОСТАм: ГОСТ 13453-64, ГОСТ 13453-68, ГОСТ 17598-72. Кроме действующих стандартов терморезисторы изготавливаются различными производителями, у которых собственная система условного обозначения. Согласно действующему стандарту (ГОСТ 13453-64, ГОСТ 13453-68, ГОСТ 17598-72) условное обозначение резисторов состоит из следующих элементов.

первый элемент — буква или сочетание букв, обозначающих подкласс резисторов:

TP — тepмopeзиcтop c oтpицатeльным TKC (термистор),

TPП — тepмopeзиcтop c нoлoжитeльным TKC (пoзиcтop).

второй элемент — цифра (цифры) обозначает группу резистивного материала элемента:

1 — кобальто-марганцевые,

2 — медно-марганцевые,

3 — медно-кобальто-марганцевые,

4 — никель-кобальто-марганцевые,

5 — на ocнoвe титаната баpия, лeгиpoваннoгo гepманиeм;

6 — на ocнoвe лeгиpoванныx твepдыx pаcтвopoв в cиcтeмe BaTiO 3 — BaSnO 3 ;

8 — на ocнoвe нoлyтopаoкиcи ванадия и pяда нoликpиcталличecкиx твepдыx pаcтвopoв:

9 — на ocнoвe двyoкиcи ванадия VO 2 ;

10 — на ocнoвe cиcтeмы (Ba, Sr) TiO 3 ;

11 — на ocнoвe cиcтeмы (Ba, Sr) (Ti, Sn) O 3 , лeгиpoваннoй цepиeм.

третий элемент — нoминальнoe coнpoтивлeниe и бyквeннoe oбoзначeниe eдиницы измepeния (Ом, кОм) или цифра (цифры)- обозначает регистрационный номер конкретного типа резистора (для терморезисторов прошлых лет выпуска;

четвертый элемент — дoпycк (%).

Hапpимep, TP-2-33 кОм ±20 %. — тepмopeзиcтop c oтpицатeльным TKC, пopядкoвым нoмepoм pазpабoтки 2, нoминальным coнpoтивлeниeм 33 кОм, дoпycкoм ±20 % . Hаpядy c нoвыми вcтpeчаютcя тepмopeзиcтopы нpoшлыx лет выпуска. В ocнoвy был нoлoжeн cocтав пoлyпpoвoдникoвoгo матepиала, из кoтopoгo изгoтoвлeн иx тepмoчyвcтвитeльный элeмeнт. Hанpимep, MMT — мeднo- маpганцeвыe; KMT — кoбальтo-маpганцeвыe. Cтабилизатopы нанpяжeния oбoзначаютcя TП2/0,5 ; TП2/2 ; TП6/2. Буквы oбoзначают T (тepмo) Р(peзиcтop) П (пpямoгo пoдoгpeва).

Позистор и термистор, в чем отличие?

Цифра в числителе yказываeт нoминальнoe значeниe нанpяжeния в вoльтаx, а в знамeнатeлe — cpeднюю cилy pабoчeгo тoка в миллиамнepаx. Датчики температурыТРП 68–01И — T (тepмo), Р(peзиcтop). П (пpямoгo пoдoгpeва), 68 – температура срабатывания, 0 С, 01 – порядковый номер конструкторской разработки. И – с изолированными выводами от корпуса

Измерители СВЧ-мощности старых разработок обозначаются Т8 , Т9 , ТШ-1 и ТШ-2 . Буква Ш здесь обозначает малую шунтирующую емкость. Более поздние разработки обозначаются СТ- 3-29 и СТ3-32. Терморезисторы косвенного подогрева старых разработок для систем регулирования с глубокой обратной связью обозначаются ТКП-20, ТКП-50 и ТКП-350. Цифры указывают значение сопротивления в Ом. Позднее для этих целей были разработаны терморезисторы СТ1-21, СТ3-21, СТ1-27 и СТ3-27.В терморезисторов высокой стабильности ТРА-1 и ТРА-2 буква А обозначает резистивный материал на основе монокристаллов полупроводникового алмаза

Основные параметры и характеристики

Характеристика терморезисторов. Характеристикой терморезисторов является их статическая вольтамперная характеристика. Она представляют собой зависимости протекающего через терморезистор тока от приложенного напряжения в условиях теплового равновесия между ним и внешней средой. Вид нелинейной статической ВАХ зависит от сопротивления термочувствительного элемента, его конструкции, габаритных размеров, степени тепловой связи с окружающей средой и внешней температуры.

Рис. 2.4. Температурные зависимости сопротивления терморезисторов с отрицательным (а) и положительным (б) ТКС

Вид ВАХ терморезисторов косвенного подогрева в значительной степени зависит от тока, протекающего по обмотке подогрева І п. Поэтому для них обычно приводятся характеристики подогрева, устанавливающие связь между сопротивлением терморезистора и мощностью, рассеиваемой на обмотке подогрева.

Рис. 2.5. Характеристика нагрева терморезисторов косвенного подогрева

Основные параметры терморезисторов.

§ R н — номинальное сопротивление — сопротивление терморезисторов при определенной температуре окружающей среды, обычно — это 25°С или 20°С.

§ Т 2 , Т 1 интервал рабочих температур;

§ α — температурный коэффициент сопротивления — характеризует изменение сопротивления терморезистора в % при изменении температуры на 1 градус, обычно указывается для той же температуры, что и номинальное сопротивление.

§ Постоянная В — величина, характеризующая температурную чувствительность терморезисторов в определенном диапазоне температур. Определяется физическими свойствами полупроводникового материала, вычисляют по формуле:
, где

R 1 — сопротивление терморезистора, измеренное при температуре Т 1 , Ом;
R 2 — сопротивление терморезистора, измеренное при температуре Т 2 , Ом.

§ Р мах — максимальная мощность рассеяния — это допустимая мощность при температуре 25°С (или другой указанной в ТУ), при которой в течение заданного времени (минимальной наработки) параметры терморезисторов остаются в пределах норм, установленных в ТУ.

Предыдущая123456789Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Слово «термистор» понятно само по себе: ТЕРМический резИСТОР – устройство, сопротивление которого изменяется с температурой.

Термисторы являются в значительной степени нелинейными приборами и зачастую имеют параметры с большим разбросом. Именно поэтому многие, даже опытные инженеры и разработчики схем испытывают неудобства при работе с этими приборами. Однако, познакомившись поближе с этими устройствами, можно видеть, что термисторы на самом деле являются вполне простыми устройствами.

Вначале необходимо сказать, что не все устройства, изменяющие сопротивление с температурой, называются термисторами. Например, резистивные термометры , которые изготавливаются из маленьких катушек витой проволоки или из напыленных металлических плёнок. Хотя их параметры зависят от температуры, однако, они работают не так, как термисторы. Обычно термин «термистор» применяется по отношению к чувствительным к температуре полупроводниковым устройствам.

Имеется два основных класса термисторов: с отрицательным ТКС (температурным коэффициентом сопротивления) и с положительным ТКС.

Существуют два принципиально различных типа выпускаемых термисторов с положительным ТКС. Одни изготавливаются подобно термисторам с отрицательным ТКС, другие же делаются из кремния. Термисторы с положительным ТКС будут описаны кратко, а основное внимание будет уделено боле распространенным термисторам с отрицательным ТКС. Таким образом, если отсутствуют особые указания, то речь будет идти о термисторах с отрицательным ТКС.

Термисторы с отрицательным ТКС являются высокочувствительными, нелинейными устройствами с узким диапазоном, сопротивление которых уменьшается при увеличении температуры. На рис.1 изображена кривая, показывающая изменение сопротивления в зависимости от температуры и представляющая собой типовую температурную зависимость сопротивления. Чувствительность – приблизительно 4-5 %/ о С. Имеется большой диапазон номиналов сопротивлений, и изменение сопротивления может достигать многих ом и даже килоом на градус.

Рис.1 Термисторы с отрицательным ТКС очень чувствительны и в значительной

Степени нелинейны. R о может быть в омах, килоомах или мегоомах:

1-отношение сопротивлений R/R о; 2- температура в о С

По существу термисторы представляют собой полупроводниковую керамику. Они изготавливаются на основе порошков окислов металлов (обычно окислов никеля и марганца), иногда с добавкой небольшого количества других окислов. Порошкообразные окислы смешиваются с водой и различными связующими веществами для получения жидкого теста, которому придаётся необходимая форма и которое обжигается при температурах свыше 1000 о С.

Приваривается проводящее металлическое покрытие (обычно серебряное), и подсоединяются выводы. Законченный термистор обычно покрывается эпоксидной смолой или стеклом или заключается в какой-нибудь другой корпус.

Из рис. 2 можно видеть, что имеется множество типов термисторов.

Термисторы имеют вид дисков и шайб диаметром от 2.5 до приблизительно 25.5 мм, форму стержней различных размеров.

Некоторые термисторы сначала изготавливаются в виде больших пластин, а затем режутся на квадраты. Очень маленькие бусинковые термисторы изготавливаются путем непосредственного обжигания капли теста на двух выводах из тугоплавкого титанового сплава с последующим опусканием термистора в стекло с целью получения покрытия.

Типовые параметры

Говорить «типовые параметры» — не совсем правильно, так как для термисторов существует лишь несколько типовых параметров. Для множества термисторов различных типов, размеров, форм, номиналов и допусков существует такое же большое количество технических условий. Более того, зачастую термисторы, выпускаемые различными изготовителями, не являются взаимозаменяемыми.

Можно приобрести термисторы с сопротивлениями (при 25 o С — температуры, при которой обычно определяется сопротивление термистора) от одного ома до десяти мегоом и более.

Сопротивление зависит от размера и формы термистора, однако, для каждого определённого типа номиналы сопротивления могут отличаться на 5-6 порядков, что достигается путём простого изменения оксидной смеси. При замене смеси также и изменяется и вид температурной зависимости сопротивления (R-T кривая) и меняется стабильность при высоких температурах. К счастью термисторы с высоким сопротивлением, достаточным для того, чтобы использовать их при высоких температурах, также обладают, как правило, большей стабильностью.

Недорогие термисторы обычно имеют довольно большие допуски параметров. Например, допустимые значения сопротивлений при 25 о С изменяются в диапазоне от ± 20% до ± 5%. При более высоких или низких температурах разброс параметров еще больше увеличивается. Для типового термистора, имеющего чувствительность 4% на градус Цельсия, соответствующие допуски измеряемой температуры меняются приблизительно от ± 5 о до ± 1,25 о С при 25 о С. Высокоточные термисторы будут рассматриваться в данной статье ниже.

Ранее было сказано, что термисторы являются устройствами с узким диапазоном. Это необходимо пояснить: большинство термисторов работает в диапазоне от –80 о С до 150 о С, и имеются приборы (как правило, со стеклянным покрытием), которые работают при 400 о С и больших температурах.

Однако для практических целей большая чувствительность термисторов ограничивает их полезный температурный диапазон. Сопротивление типового термистора может изменяться в 10000 или 20000 раз при температурах от –80 о С до +150 о С. Можно представить себе трудности при проектировании схемы, которая обеспечивала бы точность измерений на обоих концах этого диапазона (если не используется переключение диапазонов). Сопротивление термистора, номинальное при нуле градусов, не превысит значения нескольких ом при

В большинстве термисторов для внутреннего подсоединения выводов используется пайка. Очевидно, что такой термистор нельзя использовать для измерения температур, превышающих температуру плавления припоя. Даже без пайки, эпоксидное покрытие термисторов сохраняется лишь при температуре не более 200 о С. Для более высоких температур необходимо использовать термисторы со стеклянным покрытием, имеющие приваренные или вплавленные выводы.

Требования к стабильности также ограничивают применение термисторов при высоких температурах. Структура термисторов начинает изменяться при воздействии высоких температур, и скорость и характер изменения в значительной степени определяются оксидной смесью и способом изготовления термистора. Некоторый дрейф термисторов с эпоксидным покрытием начинается при температурах свыше 100 о С или около того. Если такой термистор непрерывно работает при 150 о С, то дрейф может измеряться несколькими градусами за год. Низкоомные термисторы (к примеру, не более 1000 Ом при 25 о С) зачастую ещё хуже – их дрейф может быть замечен при работе приблизительно при 70 о С. А при 100 о С они становятся ненадёжными.

Недорогие устройства с большими допусками изготавливаются с меньшим вниманием к деталям и могут дать даже худшие результаты. С другой стороны, некоторые правильно разработанные термисторы со стеклянным покрытием имеют прекрасную стабильность даже при более высоких температурах. Бусинковые термисторы со стеклянным покрытием обладают очень хорошей стабильностью, так же, как и недавно появившиеся дисковые термисторы со стеклянным покрытием.

Следует помнить, что дрейф зависит как от температуры, так и от времени. Так, например, обычно можно использовать термистор с эпоксидным покрытием при кратковременном нагреве до 150 о С без значительного дрейфа.

При использовании термисторов необходимо учитывать номинальное значение постоянной рассеиваемой мощности . Например, небольшой термистор с эпоксидным покрытием имеет постоянную рассеивания, равную одному милливатту на градус Цельсия в неподвижном воздухе.

Параметры термисторов

Другими словами один милливатт мощности в термисторе увеличивает его внутреннюю температуру на один градус Цельсия, а два милливатта — на два градуса и так далее. Если подать напряжение в один вольт на термистор в один килоом, имеющий постоянную рассеивания один милливатт на градус Цельсия, то получится ошибка измерения в один градус Цельсия. Термисторы рассеивают большую мощность, если они опускаются в жидкость. Тот же вышеупомянутый небольшой термистор с эпоксидным покрытием рассеивает 8 мВт/ о С, находясь в хорошо перемешиваемом масле. Термисторы с большими размерами имеют постоянное рассеивание лучше, чем небольшие устройства. Например термистор в виде диска или шайбы может рассеивать на воздухе мощность 20 или 30 мВт/ о С следует помнить, что аналогично тому, как сопротивление термистора изменяется в зависимости от температуры, изменяется и его рассеиваемая мощность.

Уравнения для термисторов

Точного уравнения для описания поведения термистора не существует, – имеются только приближенные. Рассмотрим два широко используемых приближенных уравнения.

Первое приближенное уравнение, экспоненциальное, вполне удовлетворительно для ограниченных температурных диапазонов, в особенности – при использовании термисторов с малой точностью.

Термистор - это чувствительный к изменениям температуры элемент, изготовленный из полупроводникового материала. Он ведет себя как резистор, чувствительный к изменениям температуры. Термин «термистор» - это сокращение от термочувствительного резистора. Полупроводниковый материал - это материал, который проводит электрический ток лучше, чем диэлектрик, но не так хорошо, как проводник.

Принцип работы термистора

Подобно термометрам сопротивления термисторы используют изменения величины сопротивления в качестве основы измерений. Однако сопротивление термистора обратно пропорционально изменениям температуры, а не прямо пропорционально. По мере увеличения температуры вокруг термистора, его сопротивление понижается, а по мере понижения температуры его сопротивление увеличивается.

Хотя термисторы выдают такие же точные показания, как и термометры сопротивления, однако, термисторы чаще конструируются для измерений в более узком диапазоне.

Термистор: подробно простым языком

Например, диапазон измерений термометра сопротивления может быть в пределах от -32°F до 600°F, а термистор будет измерять от -10°F до 200°F. Диапазон измерений для конкретного термистора зависит от размера и типа полупроводникового материала, который в нем используется.

Как термометры, термисторы реагируют на изменения температуры пропорциональным изменением сопротивления, они оба часто используются в мостовых схемах.

В данной цепи изменение температуры и обратно пропорциональная зависимость между температурой и сопротивлением термистора будет определять направление протекания тока. Иначе цепь будет функционировать таким же образом как в случае с термометром сопротивления. По мере изменения температуры термистора, изменяется его сопротивление и мост становится неуравновешенным. Теперь через прибор будет протекать ток, который можно будет измерить. Измеряемый ток можно преобразовать в единицы измерения температуры с помощью переводной таблицы, или откалибровав соответствующим образом шкалу.

Глава 9

ТЕРМОРЕЗИСТОРЫ

§ 9.1. Назначение. Типы терморезисторов

Терморезисторы относятся к параметрическим датчикам температуры, поскольку их активное сопротивление зависит от тем-гературы. Терморезисторы называют также термометрами сопро­тивления или термосопротивлениями. Они применяются для!змерения температуры в широком диапазоне от -270 до 1600°С.

Если терморезистор нагревать проходящим через него электри­ческим током, то его температура будет зависеть от интенсивности теплообмена с окружающей средой. Так как интенсивность тепло­обмена зависит от физических свойств газовой или жидкой среды (например, от теплопроводности, плотности, вязкости), в которой сходится терморезистор, от скорости перемещения терморезисто­ра относительно газовой или жидкой среды, то терморезисторы ис­пользуются и в приборах для измерения таких неэлектрических величин, как скорость, расход, плотность и др.

Различают металлические и полупроводниковые терморезисто­ры. Металлические терморезисторы изготовляют из чистых метал­лов: меди, платины, никеля, железа, реже из молибдена и воль­фрама. Для большинства чистых металлов температурный ко­эффициент электрического сопротивления составляет примерно (4-6,5)10 -3 1/°С, т. е. при увеличении температуры на 1°С со-противление металлического терморезистора увеличивается на 0,4- 0,65%. Наибольшее распространение получили медные и платино­вые терморезисторы. Хотя железные и никелевые терморезисторы имеют примерно в полтора раза больший температурный коэффи­циент сопротивления, чем медные и платиновые, однако применя­ются они реже. Дело в том, что железо и никель сильно окисляют­ся и при этом меняют свои характеристики. Вообще добавление в металл незначительного количества примесей уменьшает темпе­ратурный коэффициент сопротивления. Сплавы металлов и окис­ляющиеся металлы имеют низкую стабильность характеристик. Однако при необходимости измерять высокие температуры прихо

дится применять такие жаропрочные металлы, как вольфрам и
молибден, хотя терморезисторы из них имеют характеристики не­
сколько отличающиеся от образца к образцу. "

Широкое применение в автоматике получили полупроводнико­
вые терморезисторы, которые для краткости называют термисто-
рами. Материалом для их изготовления служат смеси оксидов мар­
ганца, никеля и кобальта; германий и кремний с различными пои-
месями и др. к

По сравнению с металлическими терморезисторами полупровод­никовые имеют меньшие размеры в большие значения номиналь­ных сопротивлений. Термисторы имеют на порядок больший тем­пературный коэффициент сопротивления (до -6 10 -2 1/°С) Но этот коэффициент -отрицательный, т. е. при увеличении темпера­туры сопротивление термистора уменьшается. Существенный не­достаток полупроводниковых терморезисторов по сравнению с ме­таллическими-непостоянство температурного коэффициента со­противления. С ростом температуры он сильно падает, т. е. термис-тор имеет нелинейную характеристику. При массовом производст­ве термисторы дешевле металлических терморезисторов, но имеют больший разброс характеристик.

§ 9.2. Металлические терморезисторы

Сопротивление металлического проводника R зависит от температуры:

где С - постоянный коэффициент, зависящий от материала и кон­структивных размеров проводника; а -температурный коэффици-ент сопротивления; е - основание натуральных логарифмов.

Абсолютная температура (К) связана с температурой в гра­дусах Цельсия соотношением Т К=273+Т°С.

Определим относительное изменение сопротивления проводника при его нагреве. Пусть сначала проводник находился при началь­ной температуре Т 0 и имел сопротивление . При нагреве до температуры Т его сопротивление R T = T . Возьмем отношение



Медные терморезисторы выпускаются серийно и обозначаются ТСМ (термосопротивления медные) с соответствующей градуировкой:


гр. 23 имеет сопротивление 53,00 Ом при 0°С; гр. 24 имеет сопро­тивление 100,00 Ом при 0°С. Медные терморезисторы выполняют­ся из проволоки диаметром не менее 0,1 мм, покрытой для изо­ляции эмалью.

Для платиновых терморезисторов, которые применяются в бо­лее широком диапазоне температур, чем медные, следует учиты­вать зависимость температурного коэффициента сопротивления от температуры. Для этого берется не два, а три члена разложения в степенной ряд функции е*.

В диапазоне температур от -50 до 700°С достаточно точное является формула

где для платины =3,94 10 -3 1/°С, = 5,8 10 -7 (1/°С) 2 .

Платиновые терморезисторы выпускаются серийно и обознача­ются ТСП (термосопротивления платиновые) с соответствую­щей градуировкой; гр. 20 имеет сопротивление 10,00 Ом при 0°С, гр. 21-46,00 Ом; гр. 22-100,00 Ом. Платина применяется в виде неизолированной проволоки диаметром 0,05-0,07 мм.

В табл. 9.1 приведены зависимости сопротивления металличе­ских терморезисторов от температуры; они называются стандарт­ными градуировочными таблицами.

На рис. 9.1 показано устройство платинового термометра сопро­тивления. Сам терморезистор выполнен из платиновой проволо­ки 1, намотанной на слюдяную пластину 2 с нарезкой. Слюдяные накладки 3 защищают обмотку и крепятся серебряной лентой 4. Се­ребряные выводы 5 пропущены через фарфоровые изоляторы 6. Термосопротивление помещается в металлический защитный че­хол 7.



§ 9.3. Полупроводниковые терморезисторы

Сопротивление полупроводниковых терморезисторов (термисторов) резко уменьшается с ростом температуры. Их чувст­вительность значительно выше, чем металлических, поскольку тем­пературный коэффициент сопротивления полупроводниковых тер­морезисторов примерно на порядок больше, чем у металлических. Если для металлов = (4-6)*10 -3 1/°С, то для полупроводнико­вых терморезисторов ||>4*10 -2 1/°С. Правда, для термисторов этот коэффициент непостоянен, он зависит от температуры и им редко пользуются при практических расчетах.

Основной характеристикой терморезистора является зависи­мость его сопротивления от абсолютной температуры Т:

где А - постоянный коэффициент, зависящий от материала и кон­структивных размеров термистора; В - постоянный коэффициент, зависящий от физических свойств полупроводника; е - основание натуральных логарифмов.

Сравнение формулы (9.6) с формулой (9.1) показывает, что у термисторов с ростом температуры сопротивление уменьшается, а у металлических терморезисторов - увеличивается. Следовательно, у термисторов температурный коэффициент сопротивления имеет отрицательное значение.

Вообще чувствительность терморезистора (как датчика темпе­ратуры) можно оценить как относительное изменение его сопро­тивления ( R/ R), деленное на вызвавшее это изменение прираще­ние температуры:

Для металлического терморезистора чувствительность можно полу­чить дифференцируя (9.4). Следовательно, , т. е. именно тем­пературный коэффициент сопротивления определяет чувствитель­ность.

Для полупроводникового терморезистора (термистора) чувст­вительность получим, дифференцируя (9.6):

Из (9.9) видно, что чувствительность термистора имеет нелиней­ную зависимость от температуры.

Серийно выпускаются медно-марганцевые (тип ММТ) и кобаль-тово-марганцевые (тип КМТ) термисторы. На рис. 9.2 показаны за­висимости сопротивления от температуры для термисторов этих ти­пов и для сравнения - для медного терморезистора. Величина В для термисторов составляет 2-5 тыс. К (меньше - для ММТ, боль­ше для КМТ).

Электрическое сопротивление термистора при окружающей тем­пературе +20°С называют номинальным или холодным сопротив­лением. Для термисторов типов ММТ-1, ММТ-4, ММТ-5 эта вели­чина может составлять 1-200 кОм, а для типов КМТ-1, ММТ-4 - от 20 до 1000 кОм.

Верхний диапазон измеряемых температур для типа ММТ - 120°С, а для типа КМТ- 180°С.

Термисторы выпускаются в различных конструктивных испол­нениях: в виде стерженьков, дисков, бусинок. На рис. 9.3 показаны некоторые конструкции термисторов.

Термисторы типов ММТ-1, КМТ-1 (рис. 9.3, а) внешне подобны высокоомным резисторам с соответствующей системой герметиза­ции. Они состоят из полупроводникового стержня /, покрытого эма-

левой краской, контактных колпачков 2 с токоотводами 3. Термис-торы типов ММТ-4 и КМТ-4 (рис. 9.3, б) также состоят из полу­проводникового стержня 1, контактных колпачков 2 с токоотвода­ми 3. Кроме покрытия эмалью стержень обматывается металличе­ской фольгой 4, защищен металлическим чехлом 5 и стеклянным изолятором 6. Такие термисторы применимы в условиях повышен­ной влажности.

На рис. 9.3, в показан термистор специального типа ТМ-54 - «Игла». Он состоит из полупроводникового шарика / диаметром от 5 до 50 мкм, который вместе с платиновыми электродами 2 впрессован в стекло толщиной порядка 50 мкм. На расстоянии около 2,5 мм от шарика платиновые электроды приварены к выводам 3 из никелевой проволоки. Термистор вместе с токоотводами поме­щен в стеклянный корпус 4. Термисторы типа МТ-54 обладают очень малой тепловой инерцией, их постоянная времени порядка 0,02 с, и они используются в диапазоне температур от -70 до 4-250°С. Малые размеры термистора позволяют использовать его, например, для измерений в кровеносных сосудах человека.

§ 9.4. Собственный нагрев термисторов

Термисторы применяются в самых различных схемах ав­томатики, которые можно разделить на две группы. В первую груп­пу входят схемы с термисторами, сопротивление которых определя­ется только температурой окружающей среды. Ток, проходящий при этом через термистор, настолько мал, что не вызывает допол­нительного разогрева термистора. Этот ток необходим только для измерения сопротивления и для термисторов типа ММТ составляет около 10 мА, а для типа КМТ- 2-5 мА. Во вторую группу вхо­дят схемы с термисторами, сопротивление которых меняется за счет

собственного нагрева. Ток, проходящий через термистор, разогрева­ет его. Поскольку при повышении температуры сопротивление уменьшается, ток увеличивается, что приводит к еще большему вы­делению теплоты. Можно сказать, что в данном случае проявля­ется положительная обратная связь. Это позволяет получить в схе­мах с термисторами своеобразные характеристики релейного типа. На рис. 9.4, а показана вольт-амперная характеристика термис-тора. При малых токах влияние собственного нагрева незначительно и сопротивление термистора практически остается постоянным. Следовательно, напряжение на термисторе растет про­порционально току (участок ОА). При дальнейшем увеличении то­ка (/>/ доп) начинает сказываться собственный нагрев термистора, сопротивление его уменьшается. Вольт-амперная характеристика изменяет свой вид, начинается ее «падающий» участок АБ. Этот участок используется для создания на базе термистора схем тер­мореле, стабилизатора напряжения и др.

Резко выраженная нелинейность вольт-амперной характеристи­ки термистора позволяет использовать его в релейном режиме. На рис. 9.4, б представлена схема включения, а на рис. 9.4, в - харак­теристика термистора в этом режиме. Если в цепи термистора от сутствует добавочное сопротивление(R ДОБ 0), то при некотором значении напряжения ток в цепи термистора резко увеличивается, что может привести к разрушению термистора (кривая U T на рис. 9.4, в). Для ограничения роста тока необходимо в цепь тер­мистора R T включить добавочный резистор R ДОБ (рис. 9.4, б) с пря­молинейной характеристикой (кривая U R на рис. 9.4, в). При гра­фическом сложении этих двух характеристик { U t + U r) получим общую вольт-амперную характеристику U 0 (имеющую S-образный вид на рис. 9.4, в). Эта характеристика похожа на характеристику бесконтактного магнитного реле (см. гл. 26). Рассмотрим по этой характеристике процесс изменения тока I в цепи (рис. 9.4, б) при плавном увеличении напряжения питания U 0 При достижении значения напряжения срабатывания U cp (этому напряжению со­ответствует ток I 1) ток скачком возрастает от значения 1 до су­щественно большего значения / 2 . При дальнейшем увеличении на­пряжения ток будет плавно возрастать от I 2 . При уменьшении на­пряжения ток вначале плавно уменьшается до значения I 3 (этому току соответствует напряжение отпускания U 0 T), а затем скачком падает до значения / 4 , после чего ток плавно уменьшается до - нуля. Скачкообразное изменение тока происходит не мгновенно, а посте­пенно из-за инерционности термистора.

§ 9.5. Применение терморезисторов

При использовани терморезисторов в качестве датчиков систем автоматики различают два основных режима. В первом ре­жиме температура терморезистора практически определяется толь­ко температурой окружающей среды. Ток, проходящий через тер­морезистор, очень мал и практически не нагревает его. Во втором режиме терморезистор нагревается проходящим по нему током, а температура терморезистора определяется изменяющимися усло­виями теплоотдачи, например интенсивностью обдува, плотностью окружающей газовой среды и т. п.

При использовании терморезисторов в первом режиме они иг­рают роль датчиков температуры и называются обычно термомет­рами сопротивления. Наибольшее распространение получили тер­мометры сопротивления типов ТСП (платиновые) и ТСМ (медные), включаемые в мостовую измерительную схему.

В процессе измерения температуры с помощью термометров со­противления могут возникать следующие погрешности: 1) от ко­лебания напряжения питания; 2) от изменения сопротивления со­единительных проводов при колебаниях температуры окружающей среды; 3) от собственного нагрева датчика под действием проте­кающего через него тока.

Рассмотрим схему включения термометра сопротивления (рис. 9.5), в которой приняты меры для уменьшения отмеченных трех видов погрешностей.Для уменьшенияпогрешности от колебаний питания используется измерительный прибор логомет.-рического типа (см. гл. 2). Угол отклонения подвижной системы логометра пропорционален отношению токов в двух катушках, од­на из которых создает вращающий, а вторая - противодействую­щий моменты. Через одну катушку проходит ток разбаланса, за­висящий от сопротивлеия терморезистора Rt. Вторая катушка пи­тается тем же напряжением, что и мостовая измерительная схема.

При колеоаниях напряжении питания

одновременно будут изменяться токи в обеих катушках, а их отношение бу­дет оставаться постоянным.

В автоматических уровновешенных мостах колебание напряжения пита­ния не приводит к появлению пропор­циональной погрешности измерения, незначительно изменяется лишь порог чувствительности.

Для уменьшения погрешности от изменения сопротивления соединитель­ных проводов необходимо правильно выбирать сопротивление датчика. Эта погрешность сводится к минимуму, ес­ли сопротивление датчика выбрать из условия намного больше R пр, где R пр - сопротив­ление соединительных проводов. При больших расстояниях (сотни метров) R пр может достигать 3-5 ОмЛЕще од­ним способом уменьшения погрешно­сти от температурных изменений со-

противления соединительных проводов является применение «п»-гопроводных схем. На рис. 9.5 показана схема включения датчи­ка R Д в мостовую схему посредством трех проводов (а, б, в). Со­противления проводов а и б включены в смежные плечи моста, поэтому одновременное их изменение не нарушает равновесия мос­та. Сопротивление проводов b вообще не входит в мостовую схе­му. Погрешность за счет самонагрева датчика может быть учтена при градуировке шкалы измерительного прибора.

При быстром изменении температуры появляется динамическая погрешность, обусловленная тепловой инерцией датчика. Переда­ча теплоты от измеряемой среды к терморезистору происходит не мгновенно, а в течение некоторого времени.


Для количественной оценки тепловой инерции датчика пользу­ются понятием «постоянная времени»:

коэффициент теплопередачи; s - поверхность соприкосновения дат­чика со средой.

Если холодный датчик поместить в среду с температурой Т ср (°С), то его температура будет изменяться во времени по сле­дующему закону:

Чем больше постоянная времени т, тем больше пройдет времени, пока температура датчика сравняется с температурой среды. За время датчик нагреется только до температуры Т ср =0,63°С,

а за время / до температуры Т, ср =0 > 99 о С. Графиком уравне­ния (9.11) является экспонента, показанная на рис. 1.3, в.

Рассмотрим теперь некоторые примеры использования собст­венного нагрева терморезисторов в устройствах для измерения раз­личных физических величин, косвенно связанных с температурой.

Автоматическое измерение скорости газового потока проводится с помощью термоапемометра. Датчик этого прибора (рис. 9.6, а) состоит из терморезистора, представляющего собой тонкую пла­тиновую проволоку /, припаянную к двум манганиновым стерж­ням 2, закрепленным в изоляционной втулке 3. С помощью выводов 4 терморезистор включается в измерительную схему. Через термо­резистор пропускается ток, вызывающий его нагрев. Но темпера­тура (а следовательно, и сопротивление) терморезистора будет оп­ределяться скоростью газового потока, в который помещен дат­чик. Чем больше будет эта скорость, тем интенсивнее будет отво­диться теплота от терморезистора. На рис. 9.6, б показана градуи-ровочная кривая термоанемометра, из которой видно, что при уве­личении скорости примерно вдвое сопротивление терморезистора уменьшается примерно на 20%.

На аналогичном принципе основана работа электрического га­зоанализатора. Если взять два одинаковых саморазогреваемых тер­морезистора и поместить один в камеру, наполненную воздухом, а другой - в камеру, наполненную смесью воздуха с углекислым газом СО 2 , то из-за различной теплопроводности воздуха и угле­кислого газа сопротивление терморезисторов будет разным. Так как теплопроводность углекислого газа значительно меньше тепло­проводности воздуха, то и отвод теплоты от терморезистора в ка­мере с С0 2 будет меньше, чем от терморезистора в камере с воз­духом. По разнице сопротивлений терморезисторов можно судить о процентном содержании углекислого газа в газовой смеси.

Зависимость теплопроводности газа от его давления позволя­ет использовать терморезисторы с собственным нагревом в элек- трическнх вакуумметрах. Чем глубже вакуум (т. е. более разре­жен газ), тем хуже условия теплоотдачи с поверхности терморезис­тора, помещенного в вакуумную камеру. Если через терморезис­тор пропускать ток для его нагрева, то температура терморезисто­ра будет возрастать при уменьшении давления контролируемого газа.

Таким образом, с помощью терморезисторов можно измерять скорости и расход газов и жидкостей, давление и плотность газов, определять процентное содержание газов в смеси. Кроме платины в таких приборах используют вольфрам, никель, полупроводниковые терморезисторы. Для того чтобы исключить влияние колебаний температуры окружающей среды, стремятся обеспечить достаточ­но интенсивный собственный нагрев (до 200-500°С).

Терморезисторы относятся к категории полупроводниковых приборов и широко используются в электротехнике. Для их изготовления применяются специальные полупроводниковые материалы, имеющие значительный отрицательный температурный коэффициент. Если в целом рассматривать терморезисторы, принцип работы этих устройств заключается в том, что электрическое сопротивление данных проводников, полностью зависит от температуры. В данном случае, учитываются формы и размеры терморезистора, а также, физические свойства полупроводника. Отрицательный температурный коэффициент в несколько раз превышает такой же показатель для металлов.

Устройство и действие терморезисторов

Наиболее распространенные терморезисторы изготавливаются в виде полупроводникового стержня, покрытого эмалевой краской. К нему подводятся выводы и контактные колпачки, использующиеся только в сухой среде. Отдельные конструкции терморезисторов помещаются в герметичном металлическом корпусе. Они могут свободно применяться в помещениях с любой влажностью и легко переносят влияние агрессивной среды.

Герметичность конструкции обеспечивается с помощью стекла и олова. Стержни в таких терморезисторах оборачиваются металлической фольгой, а для токоотвода используется никелевая проволока. Номинальные значения терморезисторов находятся в диапазоне от 1 до 200 кОм, а их температурный диапазон находится в пределах от -100 до +129 градусов.

В работе терморезисторов применено свойство проводников, изменять в зависимости от температуры. Для этих приборов применяются металлы в чистом виде, чаще всего, платина и .

Использование терморезисторов

Многие конструкции терморезисторов применяются в приборах, контролирующих и регулирующих температуру. У них имеется источник тока, чувствительный элемент и измерительный уравновешенный мост. В уравновешенное состояние мост приводится путем перемещения движка реостата. В результате, реостатная величина находится в пропорции с измеряемым сопротивлением, которое полностью зависит от температуры.

Кроме уравновешенных измерительных мостов, применяется неуравновешенный вариант, у который обладает повышенной надежностью. Однако, у такого прибора, точность измерений значительно ниже, поскольку на него влияют колебания напряжения в источнике тока. Например, термометр сопротивления на основе платины, позволяет измерять температуру в пределах от -10 до +120 градусов. Относительная влажность может доходить до 98%.

Принцип действия такого прибора основан на изменении сопротивления платины в зависимости от изменений температуры. Непосредственная фиксация результатов измерения сопротивления осуществляется с помощью вторичного прибора, оборудованного шкалой.

Здесь приведены характеристики малогабаритных терморезисторов которые могут применяться в устройствах контроля температуры ПК и разрабатываемых Вами конструкциях.

Терморезисторы или термисторы (ТР) - полупроводниковые резисторы с нелинейной Вольт Амперной Характеристикой (ВАХ), которые имеют явно выраженную зависимость электро сопротивления от температуры. Производятся терморезисторы с отрицательным и положительным Температурным Коэффициентом Сопротивления (ТКС).

Номинальное сопротивление R н - электрическое сопротивление, значение которого обозначено на корпусе или указано в нормативной документации, измеренное при определенной температуре окружающей среды (обычно 20º С). Значения устанавливаются по ряду Е6 либо Е12.

Температурный коэффициент сопротивления ТКС - характеризует, как и обычно, изменение (обратимое) сопротивления на один градус Кельвина или Цельсия.

Максимально допустимая мощность рассеяния P max - наибольшая мощность, которую длительное время может рассеивать ТР, не вызывая необратимых изменений характеристик. При этом его температура не должна превышать максимальную рабочую температуру.

Коэффициент температурной чувствительности В - определяет характер температурной зависимости данного типа ТР. Известен как постоянная В, зависящая от физических свойств полупроводникового материала, из которого выполнен термочувствительный элемент.

Постоянная времени t - характеризует тепловую инерционность.

Она равна времени, в течении которого сопротивление ТР изменяется на 63% при перенесении его из воздушной среды температурой 0º С в воздушную среду с температурой 100º С.

Терморезисторы с отрицательным ТКС
Тип Диапазон
номинальных сопротивлений
при 20º С, кОм
Допуск % Максимальная мощность 20º С,
мВт
Диапазон
рабочих температур,
º С
ТКС при 20º С,
%/º С
Постоянная
В, К
Постоянная времени t ,
сек
Вид и область применения
КМТ-1 22 -:- 1000 ±20 1000 -60-:-180 4,2-:-8,4 3600 -:-7200 85 С, Измерения Т
КМТ-4 22-:-1000 ±20 650 -60 -:- 125 4,2-:-8,4 3600 -:-7200 115 С, Измерения Т
КМТ-8 0,1-:-10 ± 10,±20 600 -60-:-+70 4,2-:-8,4 3600-:-7200 909 Термо
компенсация
КМТ-10 100-:-3300 ± 20 250 в теч. 2сек 0-:-125 > 4,2 > 3600 75 C, Контроль Т
KMT-11 100 -:-3300 ± 20 250 в теч. 2сек 0-:-125 > 4,2 > 3600 10 C, Контроль Т
КМТ-12 100Ом-:-10 ± 30 700 -60 -:-125 4,2 -:-8,4 3600-:-7200 - Д, Изм - Т Комп.
КМЕ-14 510,680, 910 Ом
160, 200, 330 КОм
4,3, 75 МОм
при 150°С
± 20 100 -10-:-300 2,1-:-2,5
3,4-:-4,2
3,5-:-4,3
3690-:-4510
6120-:-7480
6300-:-7700
10-:-60 Б, Измерения Т
КМТ-17в 0,33-:-22 ± 10,±20 300 -60-:-155 4,2-:-7 3600-:-6000 30 Д, Измерение Т
ММТ-1 12 - :- 220 ±20 500 -60 -:- 125 2,4 -:- 5 2060 -:- 4300 85 С, Измерения Т
ММТ-4 1-:-220 ±20 560 -60 -:- 125 2,4 -:- 5 2060 -:- 4300 115 С, Измерения Т
ММТ-6 10-:-100 ± 20 50 -60 -:- 125 2,4-:-5 2060-:-4300 35 С, Измерение Т
ММТ-8 1 Ом -:- 1 ± 10,±20 600 -60 -:- 70 2,4 -:- 4 2060-:-3430 900 Термо
компенсация
ММТ-9 10 Ом -:-4,7 ± 10,±20 900 -60 -:- 125 2,4-:-5 2060-:-4300 - Д
ММТ-12 0,0047 - 1 ± 30 700 -60 -:- 125 2,4-:-4 2060-3430 - Д,Термо
компенсация
ММТ-15 750Ом-:-1,21 - - -60 -:- 125 2,6-:-4 2230-:-3430 Д
ММЕ-13 0,01 - 2,2 ± 20 600 -60 -:- 125 2,4-:-5 2060-4300 - Д, Термо
компенсация
ПТ-1 400 Ом-:-900 Ом - - -60 -:- 150 4,1-:-5,1 3500-:-4400 - Д, Измерение Т
ПТ-2 80 Ом-:- 400 Ом ± 20 - -60 -:- 150 4,4-:-4,8 3800-:-4100 - Д, Измерение Т
ПТ-3 400 Ом-:- 900 Ом ± 20 - -60 -:- 150 4,3-:-4,8 3700-:-4700 - Д, Измерение Т
ПТ-4 0,6-:-0,8 - - -60-:-150 4,1-:4,9 3500-:-4200 - Д, Измерение Т
СТ3-14 1,5; 2,2 ±20 30 -60-:-125 3,2-:-4,2 2600-:-3600 4 Б, Измерение Т
МКМТ-16 2,7; 5,1 ± 30 40 -60-:-125 3,8-:-4,2 3250-:-3600 10 Б, Измерение Т
СТ1-18 1,5; 2,2; 22; 33; 1500; 2200 при 150º С ±20 45 -60-:-300 2,25-:-5
при 150º С
4050-:-9000 1 Б, Измерение Т
СТ3-1 0,68 -:- 2,2 ± 10, ±20 600 -60 -:- 125 3,35 -:- 3,95 2870-:-3395 85 С, Измерения Т
СТ3-14 1,5; 2,2 ±20 30 -60 -:- 125 3,2-:-4,2 2600-:-3600 4 Б, Измерение Т
СТ3-17 33Ом-:-330 Ом ± 10, ±20 300 -60 -:- 100 3-:-4,5 2580-:-3850 30 Д, Изм - Т Комп.
СТ3-18 0,68-:-3,3 ±20 15 -90-:-125 2,6-:-4,1 2250-:-3250 1 Б, Измерение Т
СТ3-3 6,8; 8,2 ± 10 150 -90-:-125 2,8 -:- 3,2 1200 -:- 2400 35 С, Измерения Т
СТ1-2 82, 91,100, 110 ом ± 5 700 -60-:-+85 4,4-:-4,9 3800-:-4200 60-:-100 Д, Измерение Т
СТ1-17 330Ом-:-22 ± 10, ±20 300 -60-:-155 4,2-:-7 3600-:-6000 30 Д, Изм - Т Комп.
СТ1-19 3,3-:-10 ±20 60 -60-:-300 2,35-:-4
при 150º С
4230-:-7200 3 Б, Измерение Т
СТ1-30 33 - < 120 ма ток подогрева -60-:-85 4,2-:-5,1 3600-:-4400 6-:-12 Измерение скоростей газов и жидкостей
СТ3-19 2,2; 10; 15 ± 20 45 -90-:-125 3,4-:-4,5 2900-:-3850 3 Б, Измерение Т
СТ3-22 1 при 25°С ± 30 8 -60-:-85 3,1-:-4,2 2700-:-3700 15 Б, Измерение Т
СТ3-23 2,2 Ом-:-4,7 Ом ± 10, ±20 - 0-:-125 3,1-:-3,8 2600-:-3200 - Д, Термо
компенсация
СТ3-25 1,5-:-6,8 ± 20 8 -100-:-125 3,05-:-4,3 2500-:-3700 0,4 Б, Измерение Т
СТ3-28 150Ом-:-3,3 ± 20 - -60 -:- 125 3-:-4,6 2580-:-3970 - Д, Термо
компенсация
СТ4-2 2,1-:-3,0 - - -60 -:- 125 4,2-:-4,8 3170-:-4120 -
CT4-15 880 Ом -1,12 - - -60 -:- 125 3,4 -:-3,8 2350- 3250 - Д, Изм.Т, авто-трактон двигателей
СТ4-16 10-:-27 ± 5; ± 10 150 -60-:-155 3,45-:-4,45 2720-:-3960 30 Б, Измерение Т
СТ4-16А 6,8; 10; 15 ± 1; ± 2; ± 5 180 -60-:-+200 4,05-:-4,45 3250-:-4100 Б, Измерение Т
СТ4-17 1,5-:-2,2 ± 10 500 -80-:-+100 3,8-:-4,2 3260-:-3600 30 Д, Измерение Т
СТ9-1А 0,15-:-450 - 800 -60-:-+100 - 1600-:-2000 110 С, Термостаты
ТР-1 15; 33 ± 10; ± 20 20; 50 -60-:-+155 3,8-:-4,4 3200-:-3900 5-:-10 Б, Измерение Т
ТР-2 15; 33 ± 10; ± 20 20; 50 -60-:-+155 3,8-:-4,4 3200-:-3900 5-:-10 Б, Измерение Т
ТР-3 1,2; 12 ± 10 1000 -60 -:- 125 3,9-:-4,8 3470-:-4270 - Д, Датчик рег. Т
ТР-4 1 ± 20 70 -60-:-+200 1,8-:-2,2 1500-:-1960 3 Б, Измерение Т

ТР имеют разную конструкцию:

Конструкция Обозначение Внешний вид
стержневые С
дисковые Д
бусинковые Б
New!
Терморезисторы на основе монокристаллов полупроводникового алмаза
типа ТРА-1, ТРА-2.

Это новые полупроводниковые приборы имеющие существенные преимущества по сравнению с ранее выпускавшимися терморезисторами.

Использование полупроводниковых монокристаллов алмаза в качестве термо чувствительных элементов (ТЧЭ) имеет существенные преимущества, которые определяются следующими его уникальными свойствами:

  • полное отсутствие диффузионных эффектов (работоспособность) до температуры около 1000°С;
  • исключительная стойкость к агрессивным средам и радиации;
  • абсолютная твердость,
  • малая инерционность.

параметр при размерность величина Примечание
TPA-1 TPA-2
Номинальное сопротивление 25° С кОм 0,01 - 10000 Выпускаются по: ДИЛС.434121.001 ТУ,
ОЖ0468051ТУ
Коэффициент температурной чувствительности -200...+300° С К 300...2500 600...6000
Температурный коэффициент сопротивления 25° C %/град -0,2...-2,3 -0,5...-0,6
Максимальная рассеиваемая мощность - мВт 500
Диапазон рабочих температур - С -200...+330
Постоянная времени - сек 1...5
Пиковое ускорение многократного механического удара - g 150
Повышенное атмосферное давление - Па/кг*см 2 297200/3
Атмосферные конденсированные осадки - иней, роса
Специальные факторы - группа

Терморезисторы типа ТРА-1 и ТРА-2 могут применяться в следующих электронных устройствах:

  1. аналоговые и цифровые термометры с пределом измерения от - 60°С до 300°С (причем эксплуатация при максимальных значениях температуры в течение 500 часов не приводила к заметному изменению градуировки);
  2. термокомпенсированные генераторы частоты;
  3. терморегуляторы с различной мощностью нагревателей;
  4. расходомеры жидкости и газа термоанемометрического типа;
  5. сигнализаторы минимального уровня жидкостей,
  6. и другие где применяются ТР с отрицательным ТКС.

Стеклянный корпус и массивные по сравнению с алмазным кристаллом (~0,2…0,3 мм) существенно ограничивают максимальную рабочую температуру ТРА (< 400°С) и тепловую инерционность (> 1 с). При этом использование в качестве выводов медной проволоки диаметром 0,1 мм позволяет уменьшить постоянную времени примерно в 2 раза.

Разрабатываются опытные конструкции алмазных терморезисторов в бескорпусном исполнении, в которых размер кристалла составляет 0,5…0,6 мм, а диаметр серебряных выводов 0,05 - 0,1 мм. Для таких терморезисторов максимальная рабочая температура повышается до 600°С, и одновременно на порядок снижается тепловая инерционность.

Производитель:

ООО «Диамант», 601655, Владимирская обл., г. Александров, ул. Институтская 24, Полянский Е. В.

Терморезисторы прямого подогрева - стабилизаторы напряжения.
Тип Ном.
напряжение,
В
Диапазон
стабилизации,
В
Макс. изменения
напряжения,
В
Средний
раб. ток,
ма
Рабочая область
по току,
ма
Предельный
ток (2с),
ма
ТП 2/0,5 2 1,6-:-3 0,4 0,5 0,2-:-2 4
ТП 2/2 2 1,6-:-3 0,4 2 0,4-:-6 12
ТП 6/2 6 4,2-:-7,8 1,2 2 0,4-:-6 12
Терморезисторы с положительным ТКС, позисторы.
Тип Диапазон
номинальных сопротивлений
при 20º С,
кОм
Макс. мощность,
Вт
Диапазон
рабочих температур,
º С
Диапазон
температур положит. ТКС,
º С
Макс. ТКС при 20º С,
%/º С
Кратность изм.
сопротивления в обл. положительного ТКС.
Постоянная времени,
сек
Назначение
СТ5-1 0,02-:-0,15 0,7 -20-:-+200 100-200 20 1000 20 ПП сигнализация
СТ6-1А 0,04-:-0,4 1,1 -60-:-+155 40-:-155 10 1000 (при 25-140°С) 20 -"-
СТ6-1Б 0,18; 0,27 0,8 -60-:-+125 20-:-125 15 1000 (при 25-100°С) 20 -"-
СТ6-4Г 5-:-25 0,8 -60-:-+125 -20-:-+125 2-:-6 5-:-15 40 Д,
Измерение Т
СТ6-6Б 5-:-25 2,5 -60-:-+125 20-:-125 15 1000 180 -
СТ10-1 30-:-300 0,5 -60-:-+175 100-:-175 - - - Термокомпенсация
СТ5-2-127В 15-:-35 Ом 3 -60-:-+60 60-:-150 15 10000 (при 25-160°С) - Системы размагничивания масок кинескопов.
СТ5-2-220В 20-:-50 Ом 3 -60-:-+85 60-:-150 15 10000 (при 25-160°С) -

Если Вам нужны параметры терморезисторы специального назначения - пишите .

Справочную таблицу в полном виде (формат pdf ) из приведенного ниже справочника можно скачать .

Справочную таблицу "Терморезисторы на основе монокристаллов полупроводникового алмаза" в формате pdf можно скачать отсюда.

Литература:

1. Справочник разработчика и конструктора РЭА, Элементная база, Книга II , Москва, изд ТОО"Прибор", 2000?

По материалам справочника и др. источникам
подготовил А. Сорокин
2008 г.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!